Domain adaptation aims to transfer the knowledge acquired by models trained on (data-rich) source domains to (low-resource) target domains, for which a popular method is invariant representation learning. While they have been studied extensively for classification and regression problems, how they apply to ranking problems, where the data and metrics have a list structure, is not well understood. Theoretically, we establish a domain adaptation generalization bound for ranking under listwise metrics such as MRR and NDCG. The bound suggests an adaptation method via learning list-level domain-invariant feature representations, whose benefits are empirically demonstrated by unsupervised domain adaptation experiments on real-world ranking tasks, including passage reranking. A key message is that for domain adaptation, the representations should be analyzed at the same level at which the metric is computed, as we show that learning invariant representations at the list level is most effective for adaptation on ranking problems.
translated by 谷歌翻译
We present Hybrid Infused Reranking for Passages Retrieval (HYRR), a framework for training rerankers based on a hybrid of BM25 and neural retrieval models. Retrievers based on hybrid models have been shown to outperform both BM25 and neural models alone. Our approach exploits this improved performance when training a reranker, leading to a robust reranking model. The reranker, a cross-attention neural model, is shown to be robust to different first-stage retrieval systems, achieving better performance than rerankers simply trained upon the first-stage retrievers in the multi-stage systems. We present evaluations on a supervised passage retrieval task using MS MARCO and zero-shot retrieval tasks using BEIR. The empirical results show strong performance on both evaluations.
translated by 谷歌翻译
We propose the first joint audio-video generation framework that brings engaging watching and listening experiences simultaneously, towards high-quality realistic videos. To generate joint audio-video pairs, we propose a novel Multi-Modal Diffusion model (i.e., MM-Diffusion), with two-coupled denoising autoencoders. In contrast to existing single-modal diffusion models, MM-Diffusion consists of a sequential multi-modal U-Net for a joint denoising process by design. Two subnets for audio and video learn to gradually generate aligned audio-video pairs from Gaussian noises. To ensure semantic consistency across modalities, we propose a novel random-shift based attention block bridging over the two subnets, which enables efficient cross-modal alignment, and thus reinforces the audio-video fidelity for each other. Extensive experiments show superior results in unconditional audio-video generation, and zero-shot conditional tasks (e.g., video-to-audio). In particular, we achieve the best FVD and FAD on Landscape and AIST++ dancing datasets. Turing tests of 10k votes further demonstrate dominant preferences for our model. The code and pre-trained models can be downloaded at https://github.com/researchmm/MM-Diffusion.
translated by 谷歌翻译
The spread of rumors along with breaking events seriously hinders the truth in the era of social media. Previous studies reveal that due to the lack of annotated resources, rumors presented in minority languages are hard to be detected. Furthermore, the unforeseen breaking events not involved in yesterday's news exacerbate the scarcity of data resources. In this work, we propose a novel zero-shot framework based on prompt learning to detect rumors falling in different domains or presented in different languages. More specifically, we firstly represent rumor circulated on social media as diverse propagation threads, then design a hierarchical prompt encoding mechanism to learn language-agnostic contextual representations for both prompts and rumor data. To further enhance domain adaptation, we model the domain-invariant structural features from the propagation threads, to incorporate structural position representations of influential community response. In addition, a new virtual response augmentation method is used to improve model training. Extensive experiments conducted on three real-world datasets demonstrate that our proposed model achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.
translated by 谷歌翻译
Background and Purpose: Colorectal cancer is a common fatal malignancy, the fourth most common cancer in men, and the third most common cancer in women worldwide. Timely detection of cancer in its early stages is essential for treating the disease. Currently, there is a lack of datasets for histopathological image segmentation of rectal cancer, which often hampers the assessment accuracy when computer technology is used to aid in diagnosis. Methods: This present study provided a new publicly available Enteroscope Biopsy Histopathological Hematoxylin and Eosin Image Dataset for Image Segmentation Tasks (EBHI-Seg). To demonstrate the validity and extensiveness of EBHI-Seg, the experimental results for EBHI-Seg are evaluated using classical machine learning methods and deep learning methods. Results: The experimental results showed that deep learning methods had a better image segmentation performance when utilizing EBHI-Seg. The maximum accuracy of the Dice evaluation metric for the classical machine learning method is 0.948, while the Dice evaluation metric for the deep learning method is 0.965. Conclusion: This publicly available dataset contained 5,170 images of six types of tumor differentiation stages and the corresponding ground truth images. The dataset can provide researchers with new segmentation algorithms for medical diagnosis of colorectal cancer, which can be used in the clinical setting to help doctors and patients.
translated by 谷歌翻译
Network structure evolves with time in the real world, and the discovery of changing communities in dynamic networks is an important research topic that poses challenging tasks. Most existing methods assume that no significant change in the network occurs; namely, the difference between adjacent snapshots is slight. However, great change exists in the real world usually. The great change in the network will result in the community detection algorithms are difficulty obtaining valuable information from the previous snapshot, leading to negative transfer for the next time steps. This paper focuses on dynamic community detection with substantial changes by integrating higher-order knowledge from the previous snapshots to aid the subsequent snapshots. Moreover, to improve search efficiency, a higher-order knowledge transfer strategy is designed to determine first-order and higher-order knowledge by detecting the similarity of the adjacency matrix of snapshots. In this way, our proposal can better keep the advantages of previous community detection results and transfer them to the next task. We conduct the experiments on four real-world networks, including the networks with great or minor changes. Experimental results in the low-similarity datasets demonstrate that higher-order knowledge is more valuable than first-order knowledge when the network changes significantly and keeps the advantage even if handling the high-similarity datasets. Our proposal can also guide other dynamic optimization problems with great changes.
translated by 谷歌翻译
The ability to associate touch with sight is essential for tasks that require physically interacting with objects in the world. We propose a dataset with paired visual and tactile data called Touch and Go, in which human data collectors probe objects in natural environments using tactile sensors, while simultaneously recording egocentric video. In contrast to previous efforts, which have largely been confined to lab settings or simulated environments, our dataset spans a large number of "in the wild" objects and scenes. To demonstrate our dataset's effectiveness, we successfully apply it to a variety of tasks: 1) self-supervised visuo-tactile feature learning, 2) tactile-driven image stylization, i.e., making the visual appearance of an object more consistent with a given tactile signal, and 3) predicting future frames of a tactile signal from visuo-tactile inputs.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
Counterfactual explanations promote explainability in machine learning models by answering the question "how should an input instance be perturbed to obtain a desired predicted label?". The comparison of this instance before and after perturbation can enhance human interpretation. Most existing studies on counterfactual explanations are limited in tabular data or image data. In this work, we study the problem of counterfactual explanation generation on graphs. A few studies have explored counterfactual explanations on graphs, but many challenges of this problem are still not well-addressed: 1) optimizing in the discrete and disorganized space of graphs; 2) generalizing on unseen graphs; and 3) maintaining the causality in the generated counterfactuals without prior knowledge of the causal model. To tackle these challenges, we propose a novel framework CLEAR which aims to generate counterfactual explanations on graphs for graph-level prediction models. Specifically, CLEAR leverages a graph variational autoencoder based mechanism to facilitate its optimization and generalization, and promotes causality by leveraging an auxiliary variable to better identify the underlying causal model. Extensive experiments on both synthetic and real-world graphs validate the superiority of CLEAR over the state-of-the-art methods in different aspects.
translated by 谷歌翻译
现有的假新闻检测方法旨在将新闻分类为真或错误,并提供真实的解释,从而实现出色的表现。但是,他们经常根据有限的新闻报道和揭穿延误来定制手动事实检查报告的自动解决方案。如果尚未对一段新闻进行事实检查或揭穿事实,通常会在各种媒体上传播一定数量的相关原始报告,其中包含人群的智慧来验证新闻声明并解释其判决。在本文中,我们提出了一个新颖的粗到十五级别的级联证据依据(COFCED)神经网络,以根据此类原始报告来解释假新闻检测,从而减轻了对事实检查的依赖性。具体而言,我们首先使用层次结构编码器来用于Web文本表示,然后开发两个级联的选择器,以粗略至上的方式在所选的Top-K报告之上选择最可解释的句子。此外,我们构建了两个可解释的假新闻数据集,这些数据集可公开使用。实验结果表明,我们的模型显着优于最先进的基线,并从不同的评估角度产生高质量的解释。
translated by 谷歌翻译